REAL-TIME PROFESSIONAL BROADCAST SIGNALS OVER IP NETWORKS

Leigh Whitcomb
Harris Corporation
April 2011
Introduction

• Transport of high quality real-time contribution video over IP networks

• Goal is lower CAPEX and OPEX while maintaining quality and reliability and increasing flexibility

• Discuss the challenges, trade-off and technologies to achieve this goal
Transition from Coax to IP
Network Impairments

- Packet Loss
- Burst Loss
- Packet Out of Order
- Delay Variation – Jitter/Wander
- Signals impact other signals
- Performance varies over time
Design Factors

• Is your system point-to-point or it is multicast?
• Is there a back channel from the receiver to the transmitter?
• Are the network connections relatively static or do they change often?
• What level of control over the network do you have? Can you directly manage the network, or is it done with Service Level Agreements (SLAs)?
• What is the error rate of the network?
• What are bandwidth costs for the data and overhead that is required?
Challenges over IP Networks

- Encapsulating The Video Data
- Dealing With Packet Loss
- Getting Video Across The Network
- Protecting The Data
- To Compress Or Not To Compress
• Encapsulating The Video Data
• Dealing With Packet Loss
• Getting Video Across The Network
• Protecting The Data
• To Compress Or Not To Compress
Encapsulating The Video Data

• Challenges to solve
 – Break up video to get across network
 – Routing to get across network
 – Packet re-ordering
 – Detect packet corruption
 – Detect packet loss
Encapsulating The Video Data

- **Video Signal**: 188 to 1376 bytes
- **RTP Video Signal**: Session Layer (5)
- **UDP RTP Video Signal**: Transport layer (4)
- **IP UDP RTP Video Signal**: Layer 3
- **Ethernet IP UDP RTP Video Signal**: Layer 2
Encapsulating The Video Data

- SMPTE 2022 Family
- Real-Time-Protocol (RTP)
- User Datagram Protocol (UDP)
- IP
- Ethernet
SMPTE 2022 Family

SMPTE 2022-1 “Forward Error Correction for Real-Time Video/Audio Transport Over IP Networks”
SMPTE 2022-2 “Unidirectional Transport of Constant Bit Rate MPEG-2 Transport Streams on IP Networks”

SMPTE 2022-3 “Unidirectional transport of variable bit rate MPEG-2 Transport Streams on IP Networks”
SMPTE 2022-4 “Unidirectional Transport of Non-Piecewise Constant Variable Bit Rate MPEG-2 Streams on IP Networks”

SMPTE 2022-5 “Forward Error Correction for High Bit Rate Media Transport over IP Networks”
SMPTE 2022-6 “High Bit Rate Media Transport over IP Networks”
Break up video to get across network

• SMPTE 2022-2
 – For MPEG-2 Transport Stream (TS)
 – 188 bytes TS packets. Up to 7 TS packets
 • Up to 1316 bytes (for 7 TS)

• SMPTE 2022-6
 • For uncompressed
 • 1376 bytes
UDP

- 8 bytes of overhead
RTP

<table>
<thead>
<tr>
<th>Control Fields</th>
<th>Sequence Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>SSRC identifier</td>
</tr>
<tr>
<td>Data</td>
<td></td>
</tr>
</tbody>
</table>

- 12 bytes of overhead
• 20 bytes of overhead
Ethernet

- 42 bytes of overhead
Encapsulating The Video Data

- **Video Signal**: 188 to 1376 bytes
 - Session Layer (5), Overhead 12 bytes or 0.9%
 - Transport layer (4) Overhead 8 bytes or 0.6%
 - Layer 3, Overhead 20 bytes or 1.5%
 - Layer 2, Overhead 42 bytes or 3.1%
• Encapsulating The Video Data
• **Dealing With Packet Loss**
• Getting Video Across The Network
• Protecting The Data
• To Compress Or Not To Compress
Sources of Packet Loss

- Congestion in the network
- Random Noise
- Cuts to links
- Equipment failure
Dealing With Packet Loss

• Detecting packet corruption
• Detecting packet loss
• Regenerating lost information
Detecting packet corruption/loss

- Ethernet and UDP have check field
- Corruptions -> Loss packet

- RTP has sequence number
Regenerating Lost Packets

- Do nothing
- Forward Error Correction (FEC)
- Retransmit missing packets
FEC

• SMPTE 2022-1 “Forward Error Correction for Real-Time Video/Audio Transport Over IP Networks”
 • For compressed TS

• SMPTE 2022-5 “Forward Error Correction for High Bit Rate Media Transport over IP Networks”
 • For uncompressed
FEC (SMPTE 2022-1)
Error Recover Process
FEC Rates

<table>
<thead>
<tr>
<th>Rows</th>
<th>Columns</th>
<th>Overhead</th>
<th>Latency</th>
<th>Recovery</th>
<th>Matrix size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Column only</td>
<td>Row and Column</td>
<td>3 Mbps (ms)</td>
<td>30 Mbps (ms)</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>10%</td>
<td>30%</td>
<td>175</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>20%</td>
<td>30%</td>
<td>175</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10%</td>
<td>20%</td>
<td>351</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>20%</td>
<td>25%</td>
<td>351</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>13%</td>
<td>25%</td>
<td>225</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>20%</td>
<td>33%</td>
<td>140</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>20%</td>
<td>40%</td>
<td>88</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>17%</td>
<td>42%</td>
<td>84</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>25%</td>
<td>42%</td>
<td>84</td>
<td>8</td>
</tr>
</tbody>
</table>
FEC

• Trade-offs
 – Overhead
 – Latency
 – Recovery ability
 – Design complexity -> Cost

• Advantages
 – Lossy network
 – Multi-cast
 – No reverse channel available
 – Deterministic overhead
Retransmit missing packets
Retransmit missing packets

• Advantages
 – Higher error recovery

• Disadvantages
 – Requires reverse channel
 – Point-to-point connections
 – Variable overhead
 – High latency
 – No standards – Proprietary solutions
• Encapsulating The Video Data
• Dealing With Packet Loss
• **Getting Video Across The Network**
• Protecting The Data
• To Compress Or Not To Compress
Getting Video Across The Network

• Challenges
 – QoS
 • Identify video packets as special
 • Rules for special processing/handling
 – Failure Recovery
 • Time to switch
Getting Video Across The Network

- Networks can be grouped into:
 - Smaller Local Area Networks (LAN) and Campus Area Networks (CAN)
 - Connected islands of LAN/CAN
 - The Internet cloud
LAN/CAN - VLAN

Using VLAN

LAN/CAN #1
VLAN

- IEEE 802.1q or Virtual LAN (VLAN)
- 4 bytes of overhead
VLAN

• Advantages
 – Direct control
 – QoS
 – Lower cost than layer 3 router

• Disadvantages
 – Scalability
 – New skills
LAN/CAN

- Over provisioning
- Spanning Tree Protocol (STP)
- Internet Group Management Protocol (IGMP)
- Redundancy
Connected LAN/CAN
Connected LAN/CAN

• SONET/SDH
 – (Synchronous Optical Networking)
 – (Synchronous Digital Hierarchy)
• MPLS
 – (Multiprotocol Label Switching)
• MPLS-TP
 – (MPLS Transport Profile)
• Carrier Ethernet
SONET/SDH

• Circuit switched TDM technology
• Rates
 – OC-3 (155 Mbps)
 – OC-12 (622 Mbps)
 – OC-48 (2.5 Gbps)
 – OC-192 (10 Gbps)
SONET/SDH

• How
 – GFP (Generic Frame Procedure)
 • ITU-T G.7041/Y.1303
 – POS (Packet Over SONET)
 – ATM
SONET/SDH

- Advantages
 - High reliability
 - High QoS
 - Readily available
 - 50mS protection switching

- Disadvantages
 - Fixed bandwidth
 - Flexibility
MPLS

- 4 bytes of label overhead
MPLS

• Advantages
 – Some QoS
 – Highly scalable
 – Protocol agnostic

• Disadvantages
 – QoS by SLA
 – Dynamic behavior
 – Higher costs
MPLS-TP

• Advantages
 – QoS
 – Protection switching
 – Lower cost than MPLS

• Disadvantages
 – QoS by SLA
 – Interoperability
Carrier Ethernet Services

• ‘Big’ Ethernet network

• Types
 – Point-to-Point service (E-line)
 – Multipoint-to-Multipoint (E-LAN)
 – Point-to-Multipoint (E-tree)
Carrier Ethernet

• Implemented with
 – Ethernet over SONET/SDH
 – Ethernet over MPLS
 – Ethernet over Carrier-Ethernet Transport (CET)

• Interface to user is Ethernet
Service Level Agreement (SLA)

- Packet Delay Variation
- Packet Loss Ratio
- Packet Reordering Ratio
- Packet Loss Period
- Failure Recovery
- Service Availability
The Internet cloud
• Encapsulating The Video Data
• Dealing With Packet Loss
• Getting Video Across The Network
• Protecting The Data
• To Compress Or Not To Compress
Protecting The Data
Protecting The Data
Protecting The Data

- At source level
- At TS level
 - Basic Interoperable Scrambling System (BISS)
 - DVB Simulcrypt
- At network level
 - IPSec
• Encapsulating The Video Data
• Dealing With Packet Loss
• Getting Video Across The Network
• Protecting The Data

• To Compress Or Not To Compress
To Compress Or Not To Compress
To Compress Or Not To Compress

• Quality vs. Bandwidth
 – Uncompressed, 3x SD in GigE
 – Uncompressed, 6x HD in 10 GigE
 – Mathematically lossless
 – Visually lossless
 – Visually lossy
To Compress Or Not To Compress

- Generation losses
- Latency
- Long GOP vs. I frame only
- HANC and VANC space
- Error concealment
To Compress Or Not To Compress

Typical HD bandwidths

<table>
<thead>
<tr>
<th>Bandwidth (Mbps)</th>
<th>Compress Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,500</td>
<td>Uncompressed</td>
</tr>
<tr>
<td>200</td>
<td>JPEG 2000 4:2:2 10 bit</td>
</tr>
<tr>
<td>50</td>
<td>MPEG-2 4:2:2 8 bit</td>
</tr>
<tr>
<td>25</td>
<td>H264 4:2:2 10 bit</td>
</tr>
</tbody>
</table>
Summary

- IP networks are becoming a cost-effective way to transport real time professional broadcast signals

- Challenges
 - Encapsulating The Video Data
 - Dealing With Packet Loss
 - Getting Video Across The Network
 - Protecting The Data
 - To Compress Or Not To Compress

- New skills
- Interoperability
Questions

Leigh.Whitcomb@harris.com